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I. INTRODUCTION

Previous writers have discussed the expansion of the Meijer G-function

(Ll)

in series of the classical orthogonal polynomials of argument Ajx; see [1,2].
(For the theory of the special functions used in this paper, the Erdelyi
volumes [3] provide a good reference.) Without giving conditions, we write
the pertinent expansions in the form

and

1 :;( xlA. :;( 00

0< Ajx < 00.

(1.2)

(1.3)

We have used the notation R~a,t9)(x) = p~a,t9l(2x - 1) for the shifted Jacobi
polynomial. It has also been shown [4, 5] that for particularly important
values of m, k, P, and q the coefficients Cn , Dn may be represented asymp­
totically by

where

Cn(A.) = dln81e-alns/P [1 + O(n-51)],
Dn(A.) = d2n8se-asns/P [1 + O(n-8S)],

p = q - p + 2 ;?: 3.

n -+ 00/
n -+ 00\

(1.4)

Furthermore, in [6, 7], Cn , D n are shown to satisfy certain difference equa­
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tions whose coefficients are polynomials in II. In fact. these difference equa­
tions are of the so-called irregular type, first studied by writers such as
Adams [8] and Batchelder [9]. The theory of these equations was completed
by Birkhoff and Trjitzinsky in two of the most important and most over­
looked papers of classical analysis, see [10] and [II]. Briefly, these authors
showed that any function which satisfies a difference equation in w whose
coefficients possess convergent or even asymptotic expansions in powers of
w- I ,r an integer, will possess an asymptotic expansion given by a linear
combination of series of the form

where

'fit

y(w) '"'-' eO(w) I (In wy Sj(W),
-0

UJ ----+ J), ! 1.5)

( 1.7)

and p is an integral multiple of r, fLo an integral multiple of l/p. In this
context, the term "asymptotic expansion" has the following meaning. The
functions {(In w)" w-tlp} t = 0, 1,2, ... , S = 0, 1,2, ... ,111, can be arranged in
descending order of growth as w ---+ 00. Let this arrangement be
{xo(w), x 1(w), x 2(w), x 3(w) ... :. The above expansion can be written

and what we mean by (1.5) is

eO(w)w 8 I xAw),
j~O

( 1.11)

}'

e- O!w)w-8y(w) - I Xj(W) = O[Xr+I(W)]' W ---+ 00. (I.9)
J=O

It is easy to show that such Birkhoff expansions, as we shall call them. are
unique, like the ordinary Poincare asymptotic series (Q == 0, p = 1). The
actual coefficients of the expansion are determined by substitution using
such elementary identities as

(w + k)" 0= w~[l + (Ci.k/w) --, ... J

[
k S

[In(w + k)jB = In w -+-In (1 T ~)]

k k 2

= (In w)' T s(ln w)"-1 (~- 2w2 ~ • .,) + ...

and forcing the coefficients of xAw) to vanish, see Birkhoff [10].

(1.10)

( 1.11)
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[n view of these observations, we can see that the isolated facts about
the Jacobi polynomial expansions begin to fit together. For instance, the
steepest descent analyses in the references [4, 5] which yielded the equations
(1.4) provided, in fact, the leading terms of the Birkhoff expansions for
C,,(,\) and D n ('\). Once these leading terms (or connecting constants for the
expansions) are known, then the higher order terms can be obtained from
the difference equation by the purely algebraic methods discussed above.

Now, an excellent way of computing f(x) is to let x = ,\ in (1.2) (the
expansion (1.3) is in general much less rapidly convergent). Since

(1.12)

we will then have a series which is rapidly convergent, which does not involve
Jacobi polynomials, and whose terms possess Birkhoff expansions in n. Of
course, many other series of this type are often encountered in practice.

Methods for summing such series that would take advantage of the fact
that the n-th term possessed an asymptotic expansion of the Birkhoff type
would be of great general interest; and in the first part of this paper we
discuss such methods.

We shall see that these methods can be used to derive asymptotic expan­
sions not only for the remainder of the series L an where an has a Birkhoff
representation, but also for the remainder of series of the form L anPn ,
where an has a Birkhoff representation and Pn is a classical orthogonal
polynomial. The reason for this is that P n must satisfy a recursion relation
of order three with polynomial coefficients, and hence itself may be repre­
sented as the sum of two Birkhoff series.

II. ApPLICATIONS TO ORDINARY SERIES

We first require the following.

THEOREM 1 (Birkhoff-Trjitzinsky). Let the series

(2.1)

converge. Let

and let

w = n +" n ->- 00,

(2.2)

(2.3)



188

Q(w) as above and
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Then R n possesses the asymptotic representation

(2.4)

R n = R(w) '""-' eQ(wls*(w),

where

11 -->- X (2.5)

00

s*(w) = we* L (3mw-m;p.

m~O

Furthermore, 8*, (30 are as follows.

(2.6)

Case I: Q *' O. Let the first nonzero fLj in the sequence [p.o, fLl ,... , fLo)

be denoted by fLT • Then

8* = \8, 7 = 0
/8 + (7 - 1)/p,

(2.7)

Case II: Q = O.

(2.8)

Proof We have

8* = 8 -'- 1, (30 = exo/(8 + I). (2.9)

or

R(w + 1) - R(w) = -a(w), w = n + ex,

(2.10)

(2.11 )

and the conclusion (2.5) follows directly from Lemma 8 in [II, p. 30).
There are, however, two points that require clarification. First, there is an
arbitrary constant to be added to the series for R(w), but the constant must
be zero since R(w) -->- O. Next, no logarithms can occur in the series for
R(w), since logarithms will occur if and only if Q == 0 and sew) contains
a term w-l, see Birkhoff [10, p. 220]. However, such a case is excluded by
the requirement that L an converge. The actual determination of the con­
stants 8*, (3m in s*(w) is accomplished by using simple identities such as
(1.1 0, 1.11), see Birkhoff [10] for examples.



We find, for instance, that
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eLlQ(wl = w"Oe"O+"l[1 + ((p + 1 - a)lp) !-t"w(l-al!p + O(w-a!p)] (2.12)

Q~O,

where !-t" is the first nonzero !-t; in the sequence !-t2 , !-ta , ... , !-tp •
From the difference equation (2.11) it follows that we must have

{w"Oe"o+"l[I + ((p + 1 - alp) !-t"W(I-al!p + O(w-a!p)] -I}

X (flo + f3IW-I!P + ... + f3pw-1 + O(W-l-l!p)}

= -wO-O*{cxo+ O(W-l!p)}. (2.13)

The requirement that the leading coefficient of both sides agree, leads to
(2.7), (2.8). (Note that !-to ~ 0).

If Q - 0, the computations are even easier and we find

(B*f3olw) + (-(f3l/p) + B*f3l) w-l-l!p + ... = W8- 8*(cxO + CXIW-I!P + ...)
(2.14)

from which follows (2.9).

THEOREM 2. Let (2.1), (2.2) hold but let

d)

a(w)""" eO(wl(lnw)P L f3mw- m!p
m_O

(2.15)

p a positive integer. Then the asymptotic expansion of R(w) may be obtained
by formally differentiating the series eQ(wls*(w) p times with respect to B.
Similar asymptotic estimates for R(w) may be obtained when a(w) is any
linear combination of series of the kind (2.15) for different values ofp.

Proof The above follows from the same Lemma in [II, p. 30].
To analyze the error, we introduce the following quantities

Ie-I

Sle*(w) = w8* L f3mw- m!p,
m=O

13m , 8* as above,

k = 1,2,3,..., Re w > 0, (2.16)

Rew > 0 (2.17)

so Eiw) is a measure of the error of the process. Further let

Rew > O. (2.18)
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Thus, once Sk *(w) has been calculated, 1](w) is known. As n -+ 00 we have

at least.
Hence for Re (w) ~ N > 0 we can determine 1]N such that

Re(w) ~ N > O. (2.20)

It is easily verified that Ek(W) satisfies

where

q(w + 1) Ek(W + 1) - q(w) Eiw) = e O(w)1](w), Re w > 0, (2.21)

Rew > O. (2.22)

Re w > 0, (2.23)

Thus,

Ek(W) = -wk/pe-0(w) 1~o eO(w+s) 1](W + s) + MI,
as may be verified by differencing. Furthermore, M must be zero, since
Ek(w) -+ 0 as n -+ 00 by Theorem 1. Then

00

I Ek(W)I ::s;; I w Ik/p e-Re O(w) 1]N L eRe O(w+s) I w + siRe O'-k/p,
8=0

Re w ~ N.
(2.24)

We distinguish two cases. First, let Re Q = O. Then e* = e+ 1 and

00

I Eiw)I ::s;; I w Ik/p 1]N L I w + siRe 8+1-k/p.
8~0

Next, let Re Q =1= O. Then there exists an N' ~ N such that

eReO(w) / w /Re8-(k/p)+2

is monotone decreasing for w ~ N'. Thus

(2.25)

(2.26)

00

I Eiw)I ::s;; 1]N I wiRe 8'+2 L I w + S 1-2, W > N'. (2.27)
8=0

Our next theorem follows from the expressions (2.25) and (2.27) by an
application of the inequality [11, p. 33].

~O I x ~ S Ik' < 2 I x :. 11k' l' Re x > 1, k' > 1. (2.28)
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THEOREM 3. Let '1]N , '1](w), Ek(W), etc. be as above.

(A) Let Re Q(w) - 0, k ~ p, Re w ~ N > 1. Then

I Ek(W) I ~ (TT/2) '1]N I w Iklp j w - 1 IR e8+2- k lp. (2.29)

(B) Let Re Q(w) =1= 0, N' be as above. Then

I Ek(W)j ~ (TT/2) '1]N I w jReo*+2 j w - 1 1-1, Re w ~ N' ~ N > 1,

(2.30)
where ()* is given by (2.7).

Remark. In either case, we can say that Eiw) = O[wo*+1] as n -- 00.

Also, of interest is the case where L an diverges. The following theorem
gives an asymptotic expansion for the nth partial sum of the series.

THEOREM 4. Let L an diverge. Let

Sn = S(w)

and an, a(w), s*(w) be as in Theorem 1. Then

S(w) f'J -eQ(wls*(w) + C, n -- 00,

(2.31)

(2.32)

unless Q == °and S(w) contains a term w-1• In this case,

S(w) f'J MIn w + s(w) + C, n -- 00, (2.33)

where s(w) is a series of the kind (2.6) with ()* = () + 1.

Proof Use the equation

.:1S(w) = a(w), (2.34)

and proceed as before. The statement for the case Q = °follows from an
observation of Birkhoff [10, p. 220].

When Q = f'lW, the coefficients f1m in Theorem 1 can be found in closed
form as follows. In forming .:1R(w) we encounter the sum
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where
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plr
otherwise.

(2.36)

It is found that the fJ/s must satisfy the equation

This equation may be solved by generating functions. First let

00

Z(w) = L wr/p~r,
r=O

00

A(w) = I wr/pAr ,
r=O (2.38)

~r = fJrjT«rjp) - e), A r = -cxrjT«rjp) - e).

Multiplying both sides by w r / p and summing from r = 0 to r = CI) gives the
formal relationship

00 wr/p(_l)r/Pe
e"I2(w) t:o T«rjp) + I)r - Z(w) = A(w) (2.39)

or

Z(w) = A(w)(e"l-W - I)-I = A(w) ~o ~;~~",-~;8~1

= A(w) f wV/Pev I Bf~~)_.(l) (2.40)
v=o 8-0 «vIp) - s)! (e"l - 1)8+1

By [12, p. 145] we have

B(-8) (1) = (1 + vjp) B(vlp)-8
(Vjp)-8 (s + 1) , p I v, (2.41)

so selecting the coefficient of w r / p on the right-hand side gives

r r vip
fJr = - I CXr- v(~- e) ell + vjp) L

v=o P vip 8-0

B(-8-1)
X (vlp)-8 (242)

(s + 1)«vjp) - s)! (el'l - 1)8+1 •

<rip ( r ) m B(-S-I)
= - m~o CXr - mp p - m - e m (m + 1) to (s + 1) (m .-:';)! (e"l _ 1)8+1
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where (oJ, is Pochhammer's symbol,

(ex)" = T(ex + a)jT(ex).

For P-l = 0, a similar analysis gives

<rIp ex B
f3r = T((rjp) - B-1) m~o m! T((r/;')"--~ - B)

III. ApPLICATIONS TO EXPANSIONS IN ORTHOGONAL POLYNOMIALS

The same method can be used to sum series of the form

OC)

lex) = L anp~a·/l)(x)
n~O

193

(2.43)

(2.42)

(3.1)

when an can be represented by a Birkhoff series. This is because p~a.fJ)(x)

can be represented as a linear combination of two Birkhoff series,

\ [ ex ex ]I V(n) + V(n)p~a.fJ)(x) ,..., n-1/2Re /Cein<l> 1 + n1 + n; +... = 2 (3.2)

x == cos ep, -TT < ep < TT, n --+ 00.

The coefficients exj can be calculated by applying the method of undeter­
mined coefficients (described in the introduction) to the recurrence formula
for p~~.fJ)(x). The connecting constant C and C, on the other hand, cannot
be found this way, but can be read off the known asymptotic formula for
p~~.fJ)(x) [3, vol. 2, p. 198].

To terms of order n-2, we have

ey<l>i /2-(0:/2+1/4",;
C=-,--,;:-:;-;-----,~~--,-------,~-;;-;-;;-

TT1 / 2(sin epj2)a+2 (cos epj2)fJ+2 '

[(f + k- f) cos ep + (ex - f3~(Y - 1)] - (f + ex(3) e-i<l>

-2i sin ep

y=ex+f3+1.

We now write

(3.3)

(3.4)

(3.5)
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and
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LJR::) ,....., Vl(n) eO(w)s(W),

LJR~2) ,....., V/n) e01w)s(W),

W~ 00,

W~ 00.

(3.6)

(3.7)

Now VI' V2 can be converted into Birkhoff expansions in w l /" by letting
n = w - g. The above equations then can be used to determine Birkhoff
expansions for R~l) and R~2) since the product of two Birkhoff expansions
of the above type is a Birkhoff expansion. Finally, we put

(3.8)

All the essential features of the procedure are displayed in the special case
where cx = f3 = -1/2 (which corresponds to an expansion in Chebyshev
polynomials) and p = 1, Q(w) = !LlW.

We have

x = cos cp, (3.9)

i.e., the expansion (3.2) consists of a single term. Thus

So
00

R~l) ,....., _eiw<b+l-'lwW8 L f3~l)w-r

r=O

(3.10)

(3.11)

where the f3~1) satisfy the recursion relation (2.37) (with !Ll replaced by
!Ll + icp).

We have

Qll) _ -cxoe-i,<b .Q(l) _ e-i,<b [-CXl cxo8eI-'1+i<b ]
1-'0 - 2(eI-'1+ic/> _ 1) 1-'1 - 2 (el'l+ic/> _ 1) + (el'l+i<b _ 1)2 ,etc. (3.12)

The coefficients in R~2) are found by replacing cp by - cp above.

Rn ,....., w 8e"lW[cxovn•l + (l/w)(CXlVn•l + ecxovn.~ + '''], n~ 00, W = n + g,

Tn(x) - e"1Tn_l (x)
V".l = X '

(3.13)
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As an illustration of this, consider the series

f (-1 )n+l anTn(x) = Re f (-"-------'1).:.....n_+1_(.:.....a_e·-'·4».:.....'11

'11=1 n '11=1 n

= Re In(l + aeic/» = In(l + 172 + 2ax)1/2,

Here

195

I a I < 1. (3.14)

(3.17)

g= 0, elL! = -a, (J = -1, (Xo = 1, (Xj = O,j > 0. (3.15)

'11-1 ( I)r+1 rT ( )
In(I + 172 + 2ax)1/2 = L - a r X + Rn (3.16)

r=1 r
and

R ,....., (-17)'11 \ (T,,(x) + aTn_l(x»
'lin! X

+",1,
X = 17

2 + 2ax + 1, n~ 00.

Another interesting example is furnished by the series [3, vol. 2, p. 100].

00

Jv(2a I X I) = L E.,.J(v/2)_n(a) J(v/2)+n(a) T2n(x), a> 0, (3.18)
'11-0

1
1, n = 0,

En = 2, n > O.

If vl2 is integral, the series terminates. Otherwise, convergence is slow. Since

J ( ) J ( ) = (aI2)v r(n - vI2)(-l)n+1 sin(7TvI2)
(v/2)+n a (v/2)-n a r«vI2) + n + 1)

(
112 + viI, 1 + vl2

X 2
F

S 1 + n + (vI2), 1 - n + (vI2),

an possesses a Birkhoff series representation in even powers of lin with
fLl = 7Ti, B = -v - L The coefficients in the expansion can best be deter­
mined by using the work of Fields to find the asymptotic expansion of the
ratio of gamma functions above and then expanding the individual terms
of the 2F3 in powers of Iln2•

2(-1)'11+1 sin(v7T/2)(aI2)" n-v- l
EnJ(V/2)+n(a) J(v/2)_n(a) ,...." 7T

X [1 + ~2 (v(v + ~~v + 2) + a
2
(v 4+ 2») + ...], n~ 00. (3.20)
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Then

n-l

J v(2a I x i) = I ErJ(vj2l_r(a) J(vj2l+/a ) T2n(x) + Rn ,
r~l

(3.21)

2(_l)Ml sin(v7T/2)(a/2)Vn-V- 1 \ (T2n(x) + T2n- 1(X))
Rn "-' 7T I 2(1 + x)

_ ((v + 1) T2n(x) + 2T2n- 1(X) + T2n- 2(X)) + ...l n -+ 00,
4(1 + X)2 n '

x =1=-1.

(3.22)

This method of summing series of polynomials whose coefficients have
Birkhoff series representations will work whenever the polynomials satisfy
a difference equation with coefficients rational in n, since such polynomials
themselves always have Birkhoff expansions. In particular, all the polyno­
mials of hypergeometric type discussed by Fields and Luke [13, vol. 1, 7.4]
and by Wimp [14] satisfy such difference equations. The method is particu­
larly useful for summing series of Laguerre polynomials, since these expan­
sions tend to converge rather slowly. Let L~al(x) be the Laguerre polynomial
of degree n. Following the work of Fields and Luke [13, vol. 1, p. 264] we
write

x-(aj2)-lj4
A(x) = ~--- eXj2e-7Ti«aj2l+1j4) C = i· l• X-1j2

7T1j2 ' 1 '1'1

(3.23)

x2 X ex2 1
l/J2 = 16 - (ex + 1)(2ex + 1) "8 + 16 - 64' x > 0, ex > -1, n -+ 00.

-1 < ex < 1/2. (3.24)a >0,

As a final example, consider the slowly convergent expansion for Tricomi's
P function [3, vol. II, p. 215]

• _ 00 L~)(x)
rea) Pea, ex + 1, x) - n~o (n + a) ,

Here we let

(3.25)
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Ll Vn ,....., _n(rxj2)-5j4 A(x) eiln",)1/2

197

+ "'],

Proceeding as previously, we find that

n-l L~)(x)

rea) pea, ex + 1; x) = k~ (n + a) + Rn ,

(3.26)

(3.27)

(3.28)

X-(rxj2)-3j4e"'j2n(rxj2)-3j4 l [( ex 3 X)
Rn ,....., V1T sin Kn(x) + (nx)-lj2 "2 -"4 - 2 cos Kn(x)

+ C1X
1j2 sin Kn(x)] + (nx)-l [(; -~) X1j2 - ~l X3j2) cos Kn(x)

-(~; -(C2-a)x+(; -~)(; -~))sinKn(x)]+"'I,
n -- 00, (3.29)

Kn(x) = 2(nx)lj2 - 7T (; + i) ,C1 , C2 as in (3.23). (3.30)

We could have taken w = n + a rather than w = n, of course.
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